
Research on Differentiated Teaching Model of Python 

Programming Based on Learning Data Analysis 

Wei Zhang*, Yingxin Zhou 

Lanzhou Resources & Environment Voc-Tech University, Lanzhou, 730020, China 
*Corresponding author:zwarcher@163.com 

Abstract: With the widespread application of the Python language in education, how to improve the 

quality of programming education through differentiated teaching models has become an urgent issue to 

address. This research, based on learning data analysis, constructs a differentiated teaching model for 

Python programming courses, aiming to utilize students' learning data to achieve personalized and 

precise teaching. The model uses data collection and analysis to develop differentiated teaching content 

and personalized resource recommendation strategies, catering to students' varying learning levels and 

needs. The research results indicate that this model effectively enhances students' learning interest and 

programming abilities, offering innovative insights for Python teaching. 

Keywords: learning data analysis; Python programming; differentiated teaching; personalized learning; 

educational innovation 

Introduction 

Python programming has gradually become an essential course in both higher education and 

secondary schools, gaining popularity among teachers and students due to its wide application and ease 

of operation. However, during the learning process, students often exhibit differences in learning progress 

and outcomes due to variations in their knowledge base and learning styles. The traditional unified 

teaching model struggles to meet the diverse learning needs of students. Therefore, exploring a 

differentiated teaching model based on learning data analysis, which incorporates students' learning 

habits and ability levels to provide tailored learning paths and resource recommendations for each student, 

holds significant practical relevance and innovative value. 

1. The Application of Python Programming in Teaching Through Learning Data Analysis 

1.1 Basic Theories and Methods of Learning Data Analysis 

Learning data analysis is a technical approach based on educational data mining and learning 

analytics. Its goal is to collect and analyze data on students' learning behaviors, habits, and performance 

to accurately identify their learning status and needs, thereby supporting personalized teaching. The core 

theoretical foundations include data mining, learning behavior analysis, and personalized 

recommendation systems. Data mining involves extracting meaningful patterns and insights from large 

volumes of learning data using statistical methods, machine learning, and pattern recognition to provide 

data-driven support for teaching decisions. Learning behavior analysis focuses on revealing students' 

knowledge acquisition levels, learning styles, and engagement through their learning behavior data. 

Personalized recommendation systems, through detailed analysis of students' learning data, provide 

tailored learning content, paths, and strategies that make the learning experience more targeted. In 

programming education, the application of learning data analysis enables teachers to identify students' 

knowledge gaps, learning habits, and personalized needs at different stages of learning, allowing for the 

development of targeted teaching strategies and resources to enhance learning outcomes and 

programming skills. 

1.2 Types of Python Programming Learning Data and Methods of Collection 

In Python programming education, various types of learning data can be collected, covering aspects 

such as knowledge acquisition, learning behavior, and emotional feedback. First, knowledge acquisition 

mailto:zwarcher@163.com


data includes metrics such as exercise accuracy, error types, completion time, and number of code writing 

attempts, which reflect students' understanding of Python concepts and their proficiency in programming 

skills. Second, learning behavior data primarily includes metrics such as course participation, online 

study duration, video viewing frequency, and course completion rates, which reveal students' learning 

habits and attitudes. Additionally, emotional feedback data can be collected through emotion analysis 

and interaction records, providing insights into students' emotional states and learning motivation during 

programming studies.[1] 

These data are mainly collected through tools such as learning management systems, online coding 

platforms, and educational apps to systematically monitor and dynamically track students' learning 

progress. Comprehensive data collection allows teachers to accurately grasp students' performance and 

needs during the programming learning process. 

1.3 Teaching Improvement Supported by Learning Data Analysis 

Python programming education can achieve targeted teaching improvements based on learning data 

analysis. First, teachers can use the results of learning data analysis to implement differentiated teaching. 

By analyzing students' knowledge acquisition and learning behavior, students can be grouped into 

different levels, enabling targeted teaching support. 

Secondly, teachers can customize personalized learning resources for students based on their learning 

progress and difficulties, such as recommending specific programming exercises, study materials, or 

online courses to meet the needs of students at different levels. Furthermore, through emotional feedback 

data, teachers can adjust teaching methods in a timely manner to stimulate students' interest in learning 

and alleviate learning anxiety. 

Finally, learning data analysis supports the establishment of a real-time feedback and evaluation 

mechanism, allowing teachers to adjust teaching strategies according to students' real-time performance, 

improving the adaptability and flexibility of teaching. Teaching improvements based on learning data 

analysis can not only enhance the efficiency of programming education but also significantly improve 

students' learning experiences and programming skills.[2] 

2. Design of a Differentiated Teaching Model for Python Programming Based on Learning Data 

Analysis 

2.1 Theoretical Foundations of Differentiated Teaching Model Design 

The design of a differentiated teaching model is supported by multiple educational theories, primarily 

including constructivist learning theory, personalized learning theory, and adaptive learning theory, 

which provide a theoretical foundation for innovation in programming education. Constructivist learning 

theory posits that learning is a process in which students actively construct knowledge, emphasizing 

student-centered teaching and encouraging learners to follow their own paths of understanding to form 

personalized knowledge systems. As a result, differentiated teaching should focus on supporting students' 

choices of personalized learning paths. 

Personalized learning theory highlights the unique learning needs of each student, requiring the teaching 

model to flexibly adapt to students' varied learning progress, interests, and needs, thereby optimizing 

their learning experience and enhancing learning outcomes. 

Adaptive learning theory suggests that teaching should be dynamically adjusted based on students' ability 

levels, learning states, and personal characteristics to maximize learning efficiency and make teaching 

more adaptable. 

Based on these theories, the differentiated teaching model leverages learning data analysis to 

accurately identify students' learning characteristics, and personalized teaching plans are developed in 

accordance with each student's actual situation to ensure their full development and progress in 

programming skills and thinking. 

2.2 Student Stratification Based on Data Analysis 

Student stratification based on learning data analysis is a core step in the differentiated teaching model. 

By systematically collecting and analyzing students' learning data, students are divided into multiple tiers 

according to their learning foundation, ability levels, and learning behaviors. This process typically 

involves a comprehensive analysis and assessment of data such as students' exercise accuracy, error 



frequency, learning engagement, and online learning time to precisely determine students' learning status. 

For instance, students can be categorized into three levels: beginner, intermediate, and advanced. 

Beginners usually show low knowledge mastery and weak programming foundations, focusing primarily 

on understanding and applying basic concepts. Intermediate students have a solid foundation in 

programming knowledge but still have room for improvement in handling complex concepts and 

optimizing code. Advanced students demonstrate strong programming abilities and logical thinking, 

capable of tackling difficult programming tasks and exploring more advanced programming techniques 

and code optimization methods. 

Through stratification, teachers can gain deeper insights into the learning status of students at different 

levels and obtain accurate data support for designing differentiated teaching strategies. This ensures that 

each student receives targeted teaching guidance at an appropriate starting point and learning pace, truly 

achieving personalized education goals.[3] 

2.3 Development of Differentiated Teaching Content and Progress 

Based on student stratification, the differentiated teaching model should develop targeted teaching 

content and flexible learning progress plans according to the learning characteristics and needs of each 

level. For beginners, teaching content should focus on basic programming concepts, simple code writing, 

and understanding common syntax, helping them solidify foundational knowledge and build learning 

confidence. Intermediate students, while reinforcing foundational knowledge, should gradually delve 

into program structure, algorithm design, and logical thinking training to enhance their coding and 

problem-solving abilities. For advanced students, the content can shift toward more complex algorithms, 

data structures, and advanced programming techniques, with in-depth code optimization training. 

Through challenging project tasks, advanced students can cultivate innovation and application skills, 

achieving a higher level of programming expertise. 

The arrangement of learning progress should align with each group's knowledge absorption speed 

and comprehension ability, ensuring that the teaching pace neither creates undue pressure nor hinders 

progress. The differentiated teaching model should also incorporate a dynamic adjustment mechanism, 

regularly evaluating and providing feedback on students' learning progress. By combining the results of 

learning data analysis, teachers can adjust the teaching content and difficulty levels based on each 

student's actual progress. This personalized dynamic adjustment mechanism allows teachers to provide 

real-time support throughout the learning process, making teaching content more suited to students' 

developmental needs. Thus, true personalized and adaptive teaching is achieved, improving both the 

effectiveness of programming education and the overall student learning experience. 

2.4 Personalized Learning Resource Recommendations 

Personalized learning resource recommendations are an essential support measure for implementing 

differentiated teaching. Through learning data analysis, the specific learning needs of students at different 

levels can be accurately identified, and the most suitable learning resources are provided to help them 

address knowledge gaps, consolidate foundational knowledge, and expand advanced content. For 

example, beginners can be provided with basic Python video tutorials, introductory exercises, and 

knowledge maps to gradually master fundamental concepts and programming syntax, building a solid 

foundation. For intermediate students, the system will recommend moderately difficult programming 

tasks, code debugging exercises, and introductory knowledge of data structures and algorithms to 

strengthen their application skills and logical thinking. Advanced students will receive more challenging 

projects, comprehensive practical tasks, and programming case studies in specialized fields, allowing 

them to further deepen and expand their programming techniques, enhancing their independent inquiry 

and programming innovation abilities.[4] 

Through personalized resource recommendations, teachers can ensure that students at every stage of 

learning receive resources and support tailored to their current level. This approach not only precisely 

meets students' learning needs but also significantly enhances their initiative and interest in learning, 

providing them with a richer and more flexible learning experience during their programming studies. 

This strategy effectively enhances their programming skills while fostering their ability to learn 

independently and cultivate an exploratory spirit, laying a solid foundation for their long-term 

development. 



3. Implementation Strategies for Differentiated Teaching Model of Python Programming Based on 

Learning Data Analysis 

3.1 Implementation of Tiered Instruction 

In the differentiated teaching model for Python programming, tiered instruction is a key step in the 

implementation strategy. Based on the student stratification results obtained from learning data analysis, 

teachers can categorize students into beginner, intermediate, and advanced levels, designing 

corresponding teaching activities and content according to the learning characteristics of each group. For 

beginners, teachers may adopt simplified teaching content, detailed code demonstrations, and more 

fundamental exercises to help students understand basic concepts such as variables and functions, 

establishing foundational programming thinking. Additionally, providing operational guides and basic 

code templates can lower the learning difficulty and boost students' confidence. For intermediate students, 

teaching can focus on problem-solving methods and code optimization, cultivating their application skills 

through case studies, hands-on practice, and programming tasks, and guiding them to gradually 

understand more complex programming structures and logic. 

For advanced students, more challenging project tasks, independent research projects, and higher-

difficulty programming competition problems can be assigned to stimulate their innovation potential and 

practical abilities. This teaching content design encourages advanced students to master higher-level 

programming skills, such as the application of complex algorithms, flexible use of data structures, and 

optimization of code efficiency, enhancing their overall programming competence. Tiered instruction can 

also be enriched through group study, group discussions, and project collaboration to increase 

interactivity, offering students opportunities for communication and learning at various levels, thereby 

strengthening teamwork skills and learning motivation. Through such differentiated teaching, teachers 

can provide tailored guidance to each group of students, ensuring they make progress and improvement 

at an appropriate pace, thus achieving efficiency and personalization in programming education. 

3.2 Feedback and Adjustment Mechanism for Teaching 

To ensure the dynamic adaptability and continuous optimization of differentiated teaching, it is crucial 

to establish a timely and flexible feedback and adjustment mechanism. By tracking and providing 

feedback on students' programming exercises, project completion, code quality, and error analysis, 

teachers can gain a comprehensive understanding of students' learning progress and specific weaknesses. 

For instance, teachers can use automatically generated data reports from learning platforms to identify 

when students consistently struggle with particular knowledge points or specific programming tasks. 

When students exhibit high error rates or sustained difficulties with a particular concept, teachers can 

focus on explaining that content in the next session and provide personalized support materials, such as 

tutorial videos, additional exercises, or study guides, to help students deepen their understanding of the 

concept. 

Moreover, a feedback mechanism based on learning data helps teachers identify common difficulties 

in teaching and adjust the content and methods accordingly. For example, if most students struggle with 

complex topics such as recursion or data structures, teachers can adjust the teaching schedule, simplify 

explanations, or include more examples and exercises to ensure the precision and effectiveness of 

differentiated teaching. This dynamic adjustment not only improves teaching effectiveness but also 

allows students to learn at a more suitable pace, enhancing their learning experience.[5] 

The feedback mechanism should also include students' self-feedback, obtained through regular 

surveys, online feedback, and reflections on their learning experiences. Teachers can use this feedback 

to make flexible adjustments, such as altering the depth or pace of content, or providing more interactive 

opportunities, thereby further improving the adaptability of teaching methods and enhancing students' 

satisfaction with their learning experience. Establishing a comprehensive feedback and adjustment 

mechanism allows differentiated teaching to meet students' needs in real time, providing teachers with 

reliable data support to continuously optimize teaching strategies and achieve more effective Python 

programming instruction. 

3.3 Diversified Design of Teaching Evaluation 

A diversified design of teaching evaluation is an important aspect of assessing the effectiveness of 

the differentiated teaching model, reflecting students' growth and overall performance in Python 



programming learning. Traditional single assessment methods often focus on final exam scores, which 

do not comprehensively assess students' actual learning outcomes and skills application during the 

process. Therefore, constructing a multidimensional evaluation system is particularly important. This 

evaluation system should include formative assessment, summative assessment, and self-assessment to 

ensure comprehensive and objective evaluations. 

In formative assessment, teachers can assess students' daily programming exercises, project task 

completion, debugging skills, and learning progress, providing real-time feedback on their learning 

effectiveness, helping students identify weaknesses and adjust their learning strategies accordingly. 

Formative assessment can also include periodic quizzes, tests, and project progress reports, offering a 

variety of assessment formats to accurately record students' efforts and progress. 

Summative assessment should focus on evaluating students' actual programming abilities, such as their 

ability to independently write project code, implement algorithms, and optimize code proficiency, to 

assess their mastery of programming knowledge and application skills. Additionally, project 

presentations, code quality analysis, and programming tests can be used to comprehensively evaluate 

students' practical skills, ensuring the assessment results are realistic and application-oriented.[6] 

Furthermore, self-assessment and peer assessment are important complements to diversified 

evaluation, encouraging students to reflect on themselves and provide feedback to their peers, enhancing 

their autonomy and collaboration. In self-assessment, students can regularly reflect on their learning 

progress, problem-solving abilities, and interest in programming, discovering and planning their future 

learning directions. Peer assessment provides opportunities for collaboration and communication, 

allowing students to share and receive feedback on their learning outcomes, broadening their 

programming perspectives and improving teamwork abilities. 

By building such a multi-level, multidimensional evaluation system, teachers can more comprehensively 

and objectively assess the actual effectiveness of the differentiated teaching model. This not only helps 

students achieve better growth in programming learning but also provides strong data support for 

optimizing teaching strategies and advancing differentiated teaching. 

Conclusion 

This study constructs a differentiated teaching model for Python programming based on learning data 

analysis, emphasizing the accurate identification of students' learning needs through the collection and 

analysis of learning data, thereby providing personalized teaching support. The research results indicate 

that through the collaborative application of student stratification, personalized resource 

recommendations, and dynamic feedback mechanisms, students' programming skills and learning 

motivation have been significantly improved. This model breaks through the limitations of traditional 

teaching approaches and provides an effective path for differentiated education in programming 

instruction. Future research may focus on further optimizing learning data analysis tools to improve the 

accuracy and efficiency of the analysis, ensuring real-time feedback in teaching. Additionally, the 

applicability of this model in the teaching of other programming languages could be explored to expand 

the application of differentiated teaching models, promoting the deep development of personalized 

education in programming courses. 

Fund Project 

Gansu Province Education Science "14th Five-Year Plan" 2023 Annual Project, Project Title:

 Exploration and Application of Differentiated Teaching Model in Smart Education Environment

—Taking Python Programming at Undergraduate Level in Vocational Colleges as an Example. 

References 

[1] Yang Hui, Wu Guanglin, Tian Zhenglin, et al. Analysis of Issues and Countermeasures in Python 

Programming Teaching [J]. Industry and Science Forum, 2024, 23(17): 145-147. 

[2] Li Bin. Comparative Analysis and Outlook of Traditional and Modern Python Programming Teaching 

Methods [J]. Computer Knowledge and Technology, 2024, 20(23): 145-147. 

[3] Li Fan, Lü Jia, Cheng Lijun, et al. Research on the Teaching Model of "Python Programming" Based 

on OBE Concept [J]. Science and Technology Information, 2024, 22(15): 207-210. 

[4] Li Yanning, Liu Junwei, Zhou Tao. Analysis of Computer Programming and Teaching Models Based 

on Python Language [J]. Electronics, 2024, 53(07): 186-187. 



[5] Zhang Cong. Research on Innovative Teaching Models in Vocational Mathematics Courses Based on 

Python [J]. Science and Technology Information, 2024, 22(13): 196-199. 

[6] Liu Xiaoyu, Chen Yin. Exploration and Practice of the Reform Path for Python Programming Courses 

in Vocational Computer Majors [J]. Modern Vocational Education, 2024, (14): 84-87. 

 


