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Abstract: The APF (artificial potential field, APF) has been applied to the path planner of mobile robots 

by many technology developers and engineers because of its simple structure, small amount of calcula-

tion, good obstacle avoidance effect. However, in complex environments, the robot using this algorithm 

will have target inaccessibility and local minimum. In this article, the Euclidean distance between the 

mobile robot and the target point is multiplied by the gain coefficient of the potential field function as a 

regulating factor, which is used to optimize the repulsive potential field function to avoid the situation 

that the repulsive force is greater than the attractive force near the target point and the target is unreach-

able. Furthermore, APF was coupled with fuzzy logic algorithm based on fuzzy logic algorithm (Im-

proved Artificial Potential Field Method Fused with Fuzzy Logic Algorithm, FUZZY_APF). This method 

helps a mobile robot trapped in a local minimum to set a virtual target point nearby, providing it with an 

escape force to make the local minimum disappear. The FUZZY_APF proposed in this article will be 

simulated and tested by MATLAB software. The simulation results show that FUZZY_APF can help mo-

bile robots that encounter local minima and unreachable goals in complex environments to complete 

path planning tasks. Compared with the algorithm without improvement, the path planned by the 

FUZZY_APF is smoother, and the planning time and the planning path are shorter. 
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1. Introduction 

With the further deepening of the contemporary scientific and technological revolution, mobile robot 

technology is also developing in a more intelligent direction, and its practical application has also pene-

trated all walks of life[1,2]. Path planning technolog[3-5] is the core of mobile robot obstacle avoidance 

function, which has always been the research direction of researchers from all over the world. 

Path planning includes two directions: global path planning techniques applied to consistent static 

obstacle avoidance[6,7] and local path planning techniques applied to dynamic obstacle avoidance[8]. 

Global path planning technology is to plan a collision-free path for the mobile robot to reach the desti-

nation in advance when the environment information is known and the obstacles are static. Local path 

planning can be described as follows: the mobile robot collects the surrounding environment information 

in real-time through its own installed sensors and plans an obstacle-free path for itself according to the 

established local cost map. Local path planning includes dynamic window method, A-star algorithm that 

can be suitable for a variety of scenario, genetic algorithm with better global exploration ability, particle 

swarm optimization algorithm with better guidance for updating the position and velocity of the mobile 

robot, RRT algorithm for multidimensional space. Etc. However, these algorithms also have some obvi-

ous shortcomings. The mobile robot using the particle swarm optimization algorithm as the locally path 

planner agrees to fall into a local optimal solution in the process of planning a path. Genetic algorithm 

has weak local search ability and cannot obtain the optimal solution most of the time. The mobile robot 

using A-star as the local path planning technique has A poor effect on real-time obstacle avoidance when 

facing dynamic and unknown obstacles. The performance of RRT is easily influenced by the complexity 

of the mobile robot driving environment. 

Local path planning also includes the APF, which has low computational complexity, simple structure, 

and good dynamic obstacle avoidance effect. However, the mobile robot applying this algorithm will 

encounter the local minimum and target unreachable in a complex environment. Many scholars and en-

gineers have put forward optimization schemes. Yang et al. optimized the gravitational potential field 

function, and this method successfully solved the problem of unreachable targets. Feng et al. proposed 
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to solve the local minimum in setting virtual obstacles; Duan et al. propose to set virtual target points to 

solve local minima. Luo et al. combine the APF with deep learning to optimize their defects; There are 

also many that couple the APF with other path planning algorithms to improve the performance of the 

APF algorithm when it encounters local minimum and target unreachable problems in path planning, 

such as A*, DWA, RRT, etc. 

In this article, the Euclidean distance between the two-dimensional coordinates of the mobile robot 

and the two-dimensional coordinates of the destination is used as an adjustment parameter multiplied by 

the coefficient of the repulsion function of the APF to optimize the repulsion function, help the mobile 

robot to reach the destination smoothly, and make the phenomenon of the unreachable target disappear. 

On the basis of this scheme, the APF and fuzzy logic algorithm are coupled to help provide virtual target 

points when the mobile robot is trapped in a local minimum in a complex environment. The virtual target 

point will provide a release force to help the mobile robot escape from the state of the local minimum. 

This article will consist of the following sections. In Section 2, we explain the APF and study why it 

gets stuck in local minimums and cannot reach the target. In Section 3, we explain how to make the 

Performance of APF better and give the theories behind it. Section 4 consists of experiments and discus-

sions using simulations. In Section 5, The improved algorithm is discussed and analyzed. Lastly, Section 

6 gives a short overview of the article and discusses possibilities for future research. 

2.  The Introduction of Principles and Disadvantages of APF 

2.1 Introduction to The Principle of APF 

In 1986, Khatib proposed a virtual force method for mobile robot path planning, namely the APF. The 

mobile robot is likened to a positive charge, then the target point is a negative charge in the potential 

field, and the obstacle is a positive charge in the potential field. They apply repulsive and attractive forces 

to the mobile robot in the potential field and decide the running route of the mobile robot. Figure 1 

presents a three-dimensional view of the potential field. 

(a) (b) (c)
 

Figure 1. This is a 3D model of the potential fields, they should be listed as:(a) a description of 

what is repulsive potential field model; (b) a description of what is gravitational potential field mode; 

(c) a description of what is a 3D model of the potential field. 

The applied potential energy of the mobile robot in the potential field is inversely related to the Eu-

clidean distance between the two-dimensional coordinates of the robot and the two-dimensional coordi-

nates of the destination.  

From Equation 1, the magnitude of the gravitational potential energy exerted by the mobile robot can 

be calculated. 

Uatt(X) =  
1

2
ηρ2(qrob, qtarget) (1) 

Where η is the repulsive potential field coefficient, qrob  is the two-dimensional coordinate of the 

mobile robot, qtarget  is the two-dimensional coordinate of the target point, and ρ(qrob, qtarget) is used 

as a vector with the size of the Euclidean distance between the two coordinates. The direction of the 

vector is  qrob pointing to qtarget. The corresponding gravitation force Fatt can be obtained by taking the 

partial derivative of equation 2. 



Fatt = −∇Uatt =  ηρ(qrob, qtarget) (2) 

The influence range generated by obstacles in the potential field can be set artificially, which is called 

a repulsive potential field. When the mobile robot does not enter the area affected by obstacles, the re-

pulsive potential energy applied to the mobile robot is 0. On the contrary, when the mobile robot operates 

in the repulsive potential field created by the obstacle, the Euclidean distance between the two-dimen-

sional coordinates of the obstacles and the two-dimensional coordinates of the mobile robot is inversely 

proportional to the repulsive potential energy value applied to the mobile robot. Equation 3 is used to 

derive the potential energy magnitude applied to the mobile robot by the repulsive potential field. 

Ureq(X) =  {

1

2
k(

1

ρ(qrob, qobstacle)
−

1

ρobstacle
)2      0 ≤ ρ(qrob, qobstacle) ≤ ρo

0                              ρ(qrob, qobstacle) ≥ ρo

 (3) 

k is defined as the gain coefficient, and the specific value can be set independently according to the 

actual situation. qrob  is the mobile robot coordinate, qobstacle  is the obstacle coordinate 

ρ(qrob, qobstacle)is a vector whose direction is qrob pointing to qobstacle and magnitude is the Euclidean 

distance between qrob and qobstacle. ρo is defined as a fixed value that represents the maximum distance 

that an obstacle can affect. The magnitude of the repulsive force exerted by the mobile robot can be 

obtained by taking the partial derivative of Equation 3, and the mathematical expression is Equation 4 

Freq(X)

=  {
k(

1

ρ(qrob, qobstacle)
−

1

ρobstacle
) ∇(qrob, qobstacle)    0 ≤ ρ(qrob, qobstacle) ≤ ρo

0                                             ρ(qrob, qobstacle) ≥ ρo

 
(4) 

Equation 5 is the mathematical model expression of the sum of the attractive force and repulsive force 

that the mobile robot is subjected to in the potential field. 

F = Fatt +∑Freq(X)

X

0

 (5) 

The coordinates of the next operation of the mobile robot can be derived from Equation 6. 

{
 

 xnext = x + ρ
FX
|FX|

ynext = y +  ρ
FY
|FY|

 (6) 

The coordinates of the mobile robot are defined as (x, y), and the coordinates at the next moment are 
(xnext, ynext) driven by the repulsive and attractive forces calculated by Equations 2 and 4. The compo-

nent force FX  and component force FY  can be obtained by orthogonal decomposition of the resultant 

force found in Equation 5.  ρ is the distance that the mobile robot moves each time. 

2.2 Defect Cause Analysis of APF 

The APF is beneficial for real-time control in mobile robotics due to its simple structure and practi-

cality at the bottom layer. However, it does have some drawbacks, namely the presence of local mini-

mums and challenges in reaching certain targets. 

The occurrence of local minimums is attributed to complex obstacles encountered during the robot's 

movement, where the combined repulsive force from the obstacle in the path and the attractive force 

from the target point may result in a net force of less than or equal to zero, causing the robot's progress 

to be hindered. Refer to Figure 2 for a visual representation. 
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Figure 2. Force analysis of a mobile robot when it encounters local minima 

Because there are complex obstacles near destination, the repulsive force exerted on the mobile robot 

is greater than or equal to the gravitational force, which makes the robot oscillate and drift near the 

destination and cannot complete the path planning task. Figure 3 illustrates this scenario. 
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Figure 3. Schematic diagram of the reason for the unreachable goal. 

The diagram reveals that both the inaccessibility of the target and the occurrence of local minimums 

stem from the net force of repulsion and attraction being less than or equal to 0, as demonstrated in 

equation 7. 

Freq + Fatt ≤ 0 (7) 

3. Optimization of The APF 

3.1 Improvement of The Gain Coefficient of The Repulsion Function 

The Euclidean distance between the two-dimensional coordinates of the mobile robot and the two-

dimensional coordinates of the end point is multiplied by the gain coefficient of the repulsive force func-

tion as an adjustment parameter, so that the repulsive force received by the mobile robot during operation 

becomes smaller as the distance between the two-dimensional coordinates becomes smaller. The opti-

mized coefficient k is given in equation 8. 

kimp = k ∗ 
(sqrt ((xtarget − xrob)

2
+ (ytarget − yrob)

2))
n

(sqrt ((xtarget − xrob)
2
+ (ytarget − yrob)

2) + 1)
n (8) 

The optimized repulsion function gain coefficient is substituted into Equation 4 to complete the opti-

mization of the repulsive function, and the optimized mathematical model is shown in Equation 9 

Freq(X)

=  {
kimp(

1

ρ(qrob, qobstacle)
−

1

ρobstacle
) ∇ρ(qrob, qobstacle)     0 ≤ ρ(qrob, qobstacle) ≤ ρo

0                                            ρ(qrob, qobstacle) ≥ ρo

 
(9) 

3.2 Improved Scheme Based on Fuzzy Logic Algorithm 

Fuzzy logic algorithms are mainly used to deal with local minima with providing a virtual target point. 

The resultant force exerted on the mobile robot by obstacles and target points on the driving path and 

Euclidean distance between the two-dimensional coordinates of the mobile robot and the two-dimen-

sional coordinates of the end point are used as inputs to the fuzzy logic system. The relative Angle of the 

virtual target point coordinates to the robot coordinates and the gain coefficient of the gravitation function 

generated by the virtual target point is the output of the fuzzy logic system. 

The universe of discourse defined after normalizing the resultant force F is [0,1], and the correspond-

ing fuzzy subset is {f_s, f_m, f_l}. The universe of discourse defined after normalizing distance is [0,1], 



and the corresponding fuzzy subset is {distance_s, distance_m, distance_l}. The universe of the output 

angle angel  is [0,1], angel is [0,
π

3
 ] after clarity, and the corresponding fuzzy subsets are 

{angel_s, angel_m, angel_l}. The universe of the gain coefficient k of the gravitation function generated 

by the virtual target point is [0,1], and the corresponding fuzzy subset is {k_s, k_m, k_l}, and the range of 

k is [0,5] after clarity. The input and output variables are selected as triangular membership functions. 

Figure 4 illustrates the membership functions of the above parameters 

 

Figure 4. (a) The membership function of F; (b) The membership function of distance; (c) The mem-

bership function of angel; (d) The membership function of k. 

Table 1 is the fuzzy rule table set in this article. 

Table 1. Fuzzy rule table 

 
input output 

F distance angel k 

1 F_L distance_s angel_s k_m 

2 F_L distance_m angele_m k_m 

3 F_L distance_l angele_m k_l 

4 F_M distance_l angel_l k_l 

5 F_M distance_m angele_m k_m 

6 F_M distance_s angel_s k_s 

7 F_S distance_s angel_s k_s 

8 F_S distance_m angel_s k_s 

9 F_S distance_l angel_s k_s 

The coordinates of the virtual target point with respect to the mobile robot are derived by the relative 

Angle between the coordinates of the virtual target point and the coordinates of the mobile robot, and the 

mathematical formula used in the derivation is Equation 10. 

{
xvirtual = x + ρcos(angel)

yvirtual = y +  ρsin(angel)
 (10) 

The virtual target point will generate a gravitational potential field with a gain coefficient k, and the 

gravitational force exerted by this virtual gravitational potential field on the mobile robot can be passed 

through Equation 11. 

 

(a) (b)

(c) (d)



Fvirtual = kρ(qrob, qvirtual) (11) 

The resultant force exerted by the mobile robot after adding the virtual target point can be calculated 

by Equation 12. 

F` = F + Fvirtual (12) 

Figure 4 illustrates the force analysis of the robot after adding the virtual target point. 
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Figure 5. Force analysis of mobile robot under potential field and virtual potential field composite 

field. 

4. Analysis of Experiment and Simulation Results 

The simulation parameters adopted by the APF are obtained from Table 2. 

Table 2. simulation parameter Settings 

Gravitational 

gain coefficient 

Repulsion 

gain coeffi-

cient 

The obstacle 

affects the 

maximum ra-

dius 

The robot 

moves in 

step 

Maximum 

number of it-

erations 

Start 

point 

End 

point 

2 20 5 0.01 3000 [0,0] [8,8] 

4.1 Exponential Parameter Selection for Distance Regulation Factor 

The value of the distance factor index parameter in Section 3.1 needs to be tested repeatedly to select 

the better value. This is shown in Figures 6 and 7 and Tables 3 and 4. 

(a) (b) (c)
 

Figure 6. (a) Test Environment 1; (b) Relation between exponential parameter and running time of 

algorithm; (c) Relation between exponential parameter and the number of iterations. 



(a) (b) (c)  

Figure 7. (a) Test Environment 2; (b) Relation between exponential parameter and running time of 

algorithm; (c) Relation between exponential parameter and iterations. 

Table 3. Operation effect of under different exponential parameter in environment 1. 

Testing environment Exponential parameter Iterations Time/s 

1 

1 1012 0.013597 

2 891 0.0130416 

3 851 0.013433 

4 829 0.013341 

5 814 0.014008 

6 804 0.015409 

7 797 0.012591 

8 791 0.012743 

9 786 0.013052 

10 783 0.015824 

11 779 0.012262 

12 777 0.012372 

13 774 0.013064 

14 772 0.013893 

Table 4. Operation effect of under different exponential parameter in environment 2. 

Testing environment Exponential parameter Iterations Time/s 

2 

1 2489 2.896920 

2 1676 1.58279 

3 1584 1.125955 

4 1783 0.711311 

5 2115 0.603508 

6 1313 0.26592 

7 1119 0.023883 

8 1050 0.022856 

9 1019 0.021648 

10 1010 0.022836 

11 1017 0.022301 

12 1045 0.022350 

13 1125 0.023694 

14 1411 0.027736 

The results obtained from the analysis of Tables 3,4 and Figures 6,7 are that the iterations and the 

path planning time will change with the change of the value of the distance factor exponent parameters 

n. By testing, 10 is chosen as the exponent parameter. 

4.2 Simulation Result Analysis of Solving Unreachable Target 

The Figure 8 show the simulation results of the robot applying APF when the target is not reachable 

in a complex environment. 



 

Figure 8. Simulation diagram of unreachable targets. 

After the repulsion field function is optimized by adjusting the gain coefficient, the target unreachable 

problem is solved, Figure 9 shows the simulation results. 

 

Figure 9. Simulation diagram where the target inaccessibility is solved. 

4.3 Simulation Test of FUZZT_APF 

Although the phenomenon of unreachable goals can be addressed by optimizing the coefficient of the 

repulsive potential function, it does not mean that the mobile robot will not encounter local minimum in 

complex environments. Figure 10 point out that the improvement of repulsive potential field function 

alone is not enough to make APF suitable for more complex environments. 

 

Figure 10. The modified repulsion function suffers from local minima in complex environments. 



The scheme of generating virtual target points by coupling fuzzy logic algorithm can apply escape 

force to a robot trapped in a local minimum to help it continue to operate, Figure 11 shows the operation 

effect of this algorithm. 

 

Figure 11. The FUZZY_APF helps the robot get rid of the local minimum. 

It was also tested in different complex environments, as shown in Figures 12,13. 

 

Figure 12. Result of the operation of the FUZZY_APF in Environment 2. 

 

Figure 13. Result of the operation of the FUZZY_APF in Environment 3. 

4.4 Performance between FUZZY APF and APF 

formance of the APF and the FUZZY_APF will be compared by two parameters: iterations and the 

path planning time. 



Figures 14,15,16,17,18,19 show the simulation run result graphs of APF and FUZZY_APF in three 

different environments. 

 

Figure 14. The route planned by the APF in environment 1 

 

Figure 15. The route planned by the FUZZY_APF in environment 1. 

 

Figure 16. The route planned by the APF in environment 2 



 

Figure 17. The route planned by the FUZZY_APF in environment 2 

Table 5 records the performance comparison of the APF and the FUZZY_APF in two different envi-

ronments including the iterations and the algorithm running time. 

Table 5. Performance comparison of the APF and the FUZZY_APF 

Testing environment Algorithm Run time/s Iterations 

testing environment1 
APF 0.010420 918 

FUZZY_APF 0.006595 782 

testing environment2 
APF 0.016177 1147 

FUZZY_APF 0.015386 947 

It can be seen from Table 4 that the FUZZY_APF retains the advantages of the short running time of 

the APF, and the planned route is smoother. 

5. Discussion 

Due to the good obstacle avoidance effect, small amount of calculation, and easy implementation, 

many engineers and scholars  have used the APF in mobile robot path planning since it was proposed. 

But in a complex environment, the mobile robot using this algorithm is easy to occur local minimum and 

the target is unreachable. To enable the APF to adapt to more scenarios, it still maintains superior perfor-

mance in complex environments, many scholars have proposed different optimization schemes. Most of 

the directions are to optimize the potential field function model or set up virtual obstacles and virtual 

target points to provide an escape force, but these schemes still cannot work in complex environments, 

and the calculation amount increases and the real-time obstacle avoidance effect decreases.  

Euclidean distance between two coordinates of the robot and the destination is used as an adjustment 

factor to multiply with the repulsive force gain coefficient so that the originally fixed repulsive potential 

field function gain coefficient becomes adjustable. The exponential parameter of the adjustment factor is 

also obtained by several simulations. This scheme can address the target unreachable problem of the APF 

when the repulsive force is greater than or equal to the attractive force. Figures 8 and 9 validate the 

proposed scheme. However, the optimization of the repulsive potential field function is not sufficient to 

make the mobile robot not encounter the local minimum problem in a complex environment that is too 

far from the goal point, as shown in Figure 10. Therefore, this paper further proposes a scheme coupled 

with the fuzzy logic algorithm, which uses the fuzzy logic algorithm to generate a virtual target point in 

a range of 0 to 30 degrees relative to the mobile robot. The virtual target point will generate a virtual 

gravity field to provide gravity for the robot trapped in a local minimum so that it can deal with the local 

minimum problem in a complex environment, as shown in Figure 11.  The simulation results in Figures 

14-17 and Table 5 shows that compared with the APF, FUZZY_APF plans smoother routes with shorter 

route lengths and less planning time. In future work, it is necessary to further optimize the fuzzy logic 

system and further determine the exponent value of the optimization coefficient of the repulsion function. 

At the same time, FUZZY_APF is deployed in a more complex environment for performance verification. 
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