

Research on the Digital and Intellectual Development of Tie-Dye Patterns Based on Deep Learning

Jialiang He*, Aolei Song

Dalian Minzu University, Dalian, 116600, China

*Corresponding author: hjl@dlnu.edu.cn

Abstract: Tie-dye art, as an important expression of traditional Chinese culture, carries unique craft wisdom and aesthetic value. However, traditional tie-dye relies on experience-based creation and involves complex processes, making it difficult to effectively meet the demands of the modern design industry for efficient production and diverse expression. Against the backdrop of the rapid development of Artificial Intelligence Generated Content (AIGC) technology, deep learning offers new possibilities for the digital innovation of traditional patterns. This paper focuses on the application of deep learning in the digital and intelligent development of tie-dye patterns. It provides an in-depth review of innovative approaches utilizing technologies such as Generative Adversarial Networks (GANs) and diffusion models in pattern generation, texture expression, and color control. Furthermore, it analyzes their specific applications in the intelligentization of craft processes, including the recognition of tying structures, prediction of diffusion effects, and quality inspection of finished products. The study reveals that AIGC technologies, represented by deep learning, are progressively advancing tie-dye art from an experience-driven to a data-driven paradigm. They provide effective technical support for the innovative expression and digital dissemination of traditional crafts, constituting a crucial pathway for the modernization and transformation of tie-dye art.

Keywords: deep learning; tie-dye patterns; AIGC; digital and intellectualization

1. Introduction

Tie-dye is a traditional dyeing craft with a long history, originating in China. Renowned for its cultural significance, artistic appeal, and innovative potential, it has become a nationally recognized intangible cultural heritage with global influence and is widely applied in contemporary textile and fashion design.^[1] However, the development of traditional tie-dye is constrained by multiple factors: its production process relies on experiential transmission, resulting in a high barrier to skill acquisition; product design cycles are lengthy with insufficient capacity for innovation; furthermore, it faces practical challenges within modern industrial systems, such as limited dissemination efficiency and weak market conversion capabilities. Consequently, exploring how to break through the knowledge barriers inherent in traditional craftsmanship and achieve innovative expression of tie-dye art within the context of modern society has become a significant research topic in the field of intangible cultural heritage preservation and transmission.

Figure 1. Tie-dye Process

In recent years, Artificial Intelligence Generated Content (AIGC) technology has advanced rapidly. Models centered on deep learning have demonstrated powerful digital creative capabilities in fields such as image generation, texture expression, and style transfer, thereby opening up new opportunities for traditional art and design. Existing research indicates that AI-assisted tie-dye pattern design can effectively enhance creative efficiency and pattern diversity, accelerating the digital transformation process of the craft. Deep learning is progressively being integrated into the conception, modeling, and

reproduction of tie-dye patterns, providing a technological pathway for the preservation and innovation of intangible cultural heritage art. Simultaneously, deep learning holds significant potential at the level of the production process. By modeling the tying structures and the principles of dye diffusion, it can assist in predicting dyeing outcomes, reducing trial-and-error costs, and driving the evolution of tie-dye from an intuition-dependent, experience-based mode of production towards a more controllable, data-driven model. This provides a new direction for the reintegration and renewed dissemination of tie-dye within contexts such as modern manufacturing, digital cultural creation, and intelligent industrial environments.

Building on this, the present paper takes deep learning technology as the entry point to systematically review its current research status within the digital and intellectual development of tie-dye patterns. The analysis unfolds from two dimensions: creative pattern generation and process workflow assistance. It discusses current challenges and future trends, aiming to provide theoretical connections and technical references for the creative transformation and innovative development of tie-dye art.

2. Application of Deep Learning in Tie-Dye Pattern Generation

2.1 Application in Pattern Generation

The development of deep learning technology in the field of pattern generation has progressed through two key phases: the adversarial generation stage represented by Generative Adversarial Networks (GANs), and the probabilistic progressive sampling stage represented by Diffusion Models. This evolution—from early texture completion to models capable of autonomous creative generation—has led to significant improvements in the diversity, structural expression, and texture realism of digital pattern design.

GAN was proposed by Goodfellow in 2014. Its core mechanism involves adversarial learning between a generator and a discriminator, enabling the model to approximate the data distribution of patterns and generate images in a similar style. Numerous subsequent improved versions have led to diversified applications of GAN in the field of textile pattern generation. For instance, TexGAN employs a Deep Convolutional GAN (DCGAN) architecture to generate textile patterns with random variations and aesthetic characteristics, achieving effective learning of texture and color layout^[2]. Regarding traditional craft patterns, Conditional GAN has been utilized to generate traditional Jamdani weave patterns in Bangladesh, allowing the model to output stylistically consistent patterns based on conditional inputs^[3]. Furthermore, the extensibility of the GAN architecture provides a foundation for the tool-based development of pattern design, facilitating the expansion of pattern generation from rule-based replication towards intelligent creative generation.

Figure 2. Comparison of Tie-Dye Pattern Generation Effects Based on GAN (Left) and Diffusion Model (Right)

However, due to the fuzzy textures and random diffusion characteristics produced by dye permeation in tie-dye, GAN still faces challenges in simulating such natural transitions, including edge artifacts, mode collapse, and insufficient stability. To address GAN's limitations in expressing textural details, diffusion models have rapidly emerged as a crucial technical approach for the new generation of pattern generation. By progressively adding noise and performing reverse diffusion sampling, diffusion models can naturally reproduce texture gradients and stochastic features. Karagoz et al.

proposed applying diffusion models to textile pattern generation, achieving softer and more continuous representations of permeation details. Schaerf et al.^[5] further integrated diffusion models with GANs, enabling separable control over color distribution and textural regions in textiles, thereby providing a more controllable solution for the digital generation of traditional craft patterns.

Compared with GAN, diffusion models exhibit the following characteristics in the field of pattern generation: higher generation stability, more natural boundary handling, and greater suitability for generating complex dye-diffusion textures; however, they have slower inference speeds and higher training resource requirements. Consequently, the current trend manifests as an integration of the two approaches: GANs are responsible for rapid generation and coarse structure learning, while diffusion models handle the later-stage texture refinement and denoising reconstruction. This development direction establishes a robust model foundation for the digital innovation of tie-dye patterns. It enables a more realistic simulation of the mechanistic characteristics of tie-dye permeation while enhancing the controllability and diversity of design, thereby laying a technical groundwork for the application of deep learning in tie-dye.

2.2 Application in Texture Pattern Expression

The visual characteristics of tie-dye patterns primarily stem from the irregular textures formed by resist-dyeing structures and dye diffusion, including color bleeding, fuzzy boundaries, and random flow patterns. These naturally random effects, traditionally achieved through manual craftsmanship, are difficult to simulate using conventional two-dimensional drawing software. Deep learning models, through hierarchical learning of texture statistical features, are capable of effectively reconstructing the natural expressiveness of tie-dye textures.

Compared with GAN, diffusion models employ a gradual noise inverse sampling mechanism, which enables softer permeation edges and smoother hierarchical transitions. In textile pattern generation experiments, diffusion models can generate detailed representations that closely approximate the textural characteristics of real dyed fabrics. They are particularly suitable for expressing the cloud-like gradient textures and non-linear diffusion structures present in tie-dye^[4]. Furthermore, models based on the self-attention mechanism can enhance the ability to capture local diffusion areas, making the light and shadow transitions in the generated results more aligned with the actual dyeing mechanism and avoiding texture discontinuities or artifacts commonly seen in GANs.

However, current methods primarily rely on learning from visual outcomes without incorporating physical parameters such as dye diffusion rates or process tension. This limitation makes it difficult for the models to fully predict actual dyeing effects. Therefore, future development should explore the integration of physical mechanisms with deep generative models, advancing texture representation toward a more "scientifically controllable" direction.

2.3 Application of Color Modeling and Style Transfer Technology in Tie-Dye Patterns

The color expression in tie-dye art possesses distinct cultural attributes and color-bleeding patterns. Different ethnic groups exhibit pronounced differences in color-matching strategies and dye usage, such as blue-white gradients, warm-color blending, and natural plant dyes. Deep learning, in the aspect of color modeling, can uncover traditional color-matching principles and maintain color layer consistency during generation.

By combining GAN and diffusion models with color distribution learning, the automatic transfer and controllable generation of specific tie-dye color styles can be achieved. For instance, ColorwAI employs latent-space disentanglement technology to decouple control over "color" and "texture," enabling users to rapidly generate multiple versions of tie-dye patterns under different color schemes^[5]. Furthermore, unpaired style transfer models like CycleGAN can automatically transform traditional patterns into the visual style of tie-dye, preserving the design structure through deep feature mapping while altering color and diffusion attributes^[6].

Although color transfer enhances the digital expressive capability of tie-dye, the cultural semantics behind traditional colors—such as auspicious meanings and symbols of identity—remain difficult for models to fully convey at present. Therefore, it is necessary to introduce cultural semantic labels or human-machine collaboration mechanisms in the future to ensure that the generated colors possess greater cultural appropriateness.

2.4 Super-Resolution Reconstruction and Detail Enhancement of Tie-Dye Patterns

In the process of applying AIGC to tie-dye pattern generation, an urgent practical issue is that the resolution and detail of generated images often fail to meet the requirements of industrial-grade textile printing. Images directly generated by existing GANs or diffusion models typically have a low

resolution (e.g., 512x512 or 1024x1024 pixels). When enlarged to match the actual width of fabric, the subtle color gradients and fiber textures characteristic of tie-dye can exhibit aliasing or blurring, severely compromising the visual quality of the final product.

To address this issue, image super-resolution (SR) technology based on deep learning has become a crucial component in the digital and intelligent development pipeline for tie-dye. Models represented by ESRGAN (Enhanced Super-Resolution Generative Adversarial Networks) can restore high-frequency details from low-resolution tie-dye generated images by incorporating Residual-in-Residual Dense Blocks and perceptual loss functions. For tie-dye, the challenge of SR technology lies in distinguishing between "artistic blur" and "low-quality blur"—the charm of tie-dye itself resides in the hazy effect created by dye permeation, whereas traditional sharpening algorithms tend to disrupt such soft transitions.

Recent research trends involve training SR models with textile-specific prior knowledge, enabling them to recognize the warp-weft structure of fabrics and the natural diffusion boundaries of dyes. By training the models to learn the texture characteristics of high-definition scanned images of real tie-dye, AI can simultaneously upscale the patterns and automatically infer realistic fiber details and dye particle textures. This approach bridges the quality gap between generative models and physical printing and dyeing, ensuring the practical feasibility of digital designs.

3. Application of Deep Learning in the Intelligentization of Tie-Dye Process Workflows

3.1 Recognition and Assisted Generation of Tying Structures

The formation of tie-dye patterns relies on the resist-dyeing paths created by tying structures. Therefore, understanding the folding direction, pleat morphology, and binding positions directly determines the structural characteristics of the patterns. In the context of digital and intelligent tie-dye design, deep learning provides a reliable technological foundation for the visual recognition and assisted generation of these tying structures.

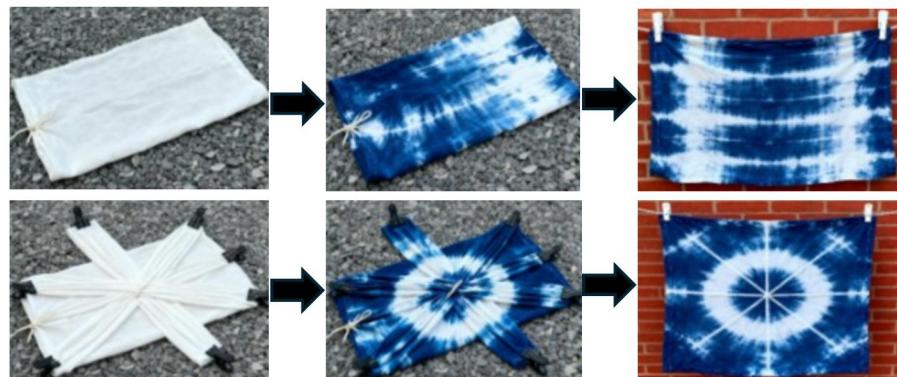


Figure 3. Tie-Dye Patterns Obtained from Different Tying Methods

Based on convolutional neural networks, fabric geometry analysis models can identify the orientation of wrinkles and areas of stress concentration through texture gradient variations, providing more objective data support for tying strategies^[7]. Furthermore, research in the field of deformable object manipulation, such as the work by Matas et al.^[8] which utilizes depth perception and reinforcement learning to infer fabric deformation patterns, can assist in understanding the hierarchical relationships between folds and structural stability, thereby offering algorithmic support for predicting tie-dye tying paths.

Although existing research has primarily been applied to fabric manipulation and textile visual analysis and has not yet been directly implemented in the tie-dye tying process, its technical pathways are highly transferable. In the future, it will be possible to construct a dataset of tying structures. By utilizing deep learning to analyze the relationship between folding parameters and dye diffusion, intelligent integrated planning of tying design and pattern presentation can be achieved.

3.2 Dye Permeation and Dyeing Effect Prediction Model

The formation of tie-dye patterns relies not only on the tying structure but also, more critically, on

the permeation and diffusion process of dyes among fibers and fabrics. This process determines color depth, gradient boundaries, and textural layers. Traditional dyeing experience struggles to ensure predictability, leading to substantial sampling, rework, and waste. In recent years, deep learning has offered a new pathway for predicting dyeing effects^[9].

Regarding specific model design, the network can take parameters such as dye concentration, tying tension, immersion time, and fabric pre-treatment state as inputs, and set outputs as indicators including post-dyeing color values, K/S values, and color difference ΔE . Convolutional networks or multi-output neural networks can learn complex mappings from "process parameters to effects," assisting craftspeople in predicting the outcome before formal dyeing. For example, research based on conditional diffusion models has demonstrated the ability to generate images simulating dye permeation patterns by controlling the initial dye distribution and fabric geometry, further enhancing visual predictive capabilities.

However, current models primarily focus on overall color or dyeing intensity and seldom delve into the specific process variables unique to tie-dye, such as the "diffusion path of dye along resist-dyeing boundaries," "local texture permeation amplitude," or "the influence of fabric folds on dye penetration depth." Therefore, for the digital and intellectual development of tie-dye, it is essential to construct a coupled physical-data model for dye diffusion. This model should treat tying structures, fabric geometry, and dye kinetics as combined inputs to achieve end-to-end prediction of the entire "tying-permeation-finished pattern" workflow. This will lay the foundation for transitioning tie-dye production from an experience-based approach to data-driven manufacturing.

3.3 Intelligent Defect Detection and Quality Assessment of Finished Tie-Dye Products

Beyond design and process assistance, deep learning also holds broad application prospects in the quality inspection stage of finished tie-dye products. In traditional tie-dye production, uncertainties inherent in manual operations easily lead to defects such as color unevenness, fabric damage, and undesired white spots caused by untied knots. Manual quality inspection is not only inefficient but also often involves a high degree of subjectivity in distinguishing between "artistic blank areas" and "craftsmanship flaws."

Computer vision technologies, particularly object detection algorithms such as the YOLO series and Mask R-CNN, provide solutions for the intelligent quality inspection of tie-dye. By constructing a dataset containing various tie-dye defects, deep neural networks can be trained to automatically identify and locate abnormal areas in finished products. Unlike the inspection of standardized industrial goods, intelligent detection models for tie-dye require a higher level of semantic understanding—they must learn to distinguish between irregular color patches that represent the "textural beauty" intended by the designer and those that constitute "flaws" caused by dye sedimentation or overly tight binding.

Furthermore, unsupervised learning-based anomaly detection models, such as Autoencoder variants, also show potential in this field. These models only need to learn the features of a large number of 'perfect' or 'qualified' tie-dye samples. They can then identify defect regions that deviate from the normal distribution through reconstruction error, eliminating the need for laborious labeling of each specific flaw type. This enables the inspection system to adapt to the ever-changing characteristics of tie-dye patterns, providing an objective and efficient 'digital screening' method for quality control in scaled production, thereby closing the loop of the entire digital and intelligent production process.

4. Personalized Customization and Virtual Experience of Tie-Dye Empowered by AIGC

4.1 Consumer-Participated C2M Reverse Customization Mode

Traditional tie-dye product development typically follows a linear process of "designer creation-factory production-user purchase," which struggles to accurately capture users' personalized aesthetics. Deep learning generative models empower the Customer-to-Manufacturer (C2M) reverse customization mode. Based on text-to-image models such as Stable Diffusion, users can input keywords (e.g., "starry sky blue," "spiral pattern," "vintage style") or even upload a mood-inspired picture to generate a unique tie-dye pattern in real-time. The system can translate users' vague needs into concrete design sketches and rapidly assess the producibility and cost of the design using the aforementioned process prediction models. This "what you think is what you get" interactive approach significantly lowers the barrier for public participation in tie-dye design, transforming consumers from

passive buyers into active "co-creators." This not only enhances the emotional added value of the products but also opens a popularized pathway for the living inheritance of intangible cultural heritage skills.

4.2 Virtual Try-On and Digital Collectible Applications

In the context of the metaverse and digital fashion, the digital and intelligent application of tie-dye patterns extends into virtual spaces. Utilizing 3D reconstruction technologies such as NeRF (Neural Radiance Fields) or 3D Gaussian Splatting, combined with generated tie-dye textures, enables the creation of high-fidelity digital tie-dye garments. Before purchasing physical clothing, users can perform virtual try-ons via AR (Augmented Reality) technology on mobile devices, allowing them to view in real-time how the tie-dye pattern's light, shadow, and drape interact with body movements. Furthermore, exquisitely beautiful tie-dye patterns generated by deep learning can themselves serve as NFT (Non-Fungible Token) digital collectibles for authentication and circulation. By recording the generation algorithms and parameters of the patterns using blockchain technology, this approach not only protects the copyright of digital designs but also creates a new revenue stream of "digital copyright income" for traditional artisans. This achieves value appreciation for intangible cultural heritage in the era of the digital economy.

Conclusion

In summary, deep learning provides a new technological pathway for the innovation of tie-dye patterns and the intellectualization of craft production, granting tie-dye art broader expressive potential in the digital age. From intelligent pattern generation to permeation prediction and further to quality inspection, artificial intelligence progressively permeates the entire tie-dye workflow, propelling its evolution from an experience-driven to a data-driven paradigm, and from manual randomness to controllable creativity. Particularly with the introduction of technologies such as image super-resolution, intelligent quality inspection, and virtual try-on, the digital and intellectual development of tie-dye is no longer confined to laboratory algorithm research but possesses a practical foundation for industrial implementation. However, mature applications still face challenges including insufficient data, weak cultural semantics, and the difficulty of mechanistic modeling, necessitating coordinated development between technology and culture. Future efforts in the digital and intellectual advancement of tie-dye should remain grounded in the essence of traditional craftsmanship while leveraging artificial intelligence as a tool. Through the synergistic promotion of digital preservation, intelligent innovation, and industrial transformation, this ancient craft can radiate new vitality in the modern era, achieving creative transformation and innovative development.

Fund Projects

Supported by the 2025 Scientific Research Project of the Digital Culture and Media Research Base, a Key Research Base for Social Sciences in Sichuan Province (Project No.: 2025SYS015).

References

- [1] Liu, Suqiong, Xing, Xiaogang, Wang, Shanshan and Zhou, Jinxiong. "Tie-Dyeing Pattern Fast-Generation Method Based on Deep-Learning and Digital-Image-Processing Technology" *AUTEX Research Journal*, vol. 23, no. 4, 2023, pp. 474-482.
- [2] Ya G N A H, Taha M, Afzal Z, et al. *TexGAN: textile pattern generation using deep convolutional generative adversarial network (DCGAN)*//2023 IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T). IEEE, 2023: 1-6.
- [3] Shawon M D T R, Tanvir R, Shifa H F, et al. *Jamdani motif generation using conditional GAN*//2020 23rd International Conference on Computer and Information Technology (ICCIT). IEEE, 2020: 1-6.
- [4] Karagoz, H. F., Baykal, G., Eksi, I. A., & Unal, G. (2023). *Textile pattern generation using diffusion models*. *arXiv preprint arXiv:2304.00520*.
- [5] Schaerf L, Alfarano A, Postma E. *ColorwAI: Generative colorways of textiles through GAN and diffusion disentanglement*//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 137-160.

[6] Zhu J Y, Park T, Isola P, et al. *Unpaired image-to-image translation using cycle-consistent adversarial networks*//*Proceedings of the IEEE international conference on computer vision*. 2017: 2223-2232.

[7] Hoque R, Seita D, Balakrishna A, et al. *Visuospatial foresight for physical sequential fabric manipulation*. *Autonomous Robots*, 2022, 46(1): 175-199.

[8] Matas, J., James, S., & Davison, A.J. (2018). *Sim-to-Real Reinforcement Learning for Deformable Object Manipulation*. *ArXiv*, *abs/1806.07851*.