

The Influence of Simulated Competition Scenario Training on the On-the-Spot Decision-Making Ability of College Badminton Players

Xi Zhou*

Hainan Vocational University of Science and Technology, Haikou, 571126, China

**Corresponding author: Joesiexi@163.com*

Abstract: In the context of increasingly comparable performance levels in competitive badminton, on-the-spot decision-making ability is the core cognitive factor distinguishing athlete proficiency. Addressing the limitations of traditional training in enhancing decision-making quality under high-pressure situations, this study systematically investigates the influence of simulated competition scenario training on the on-the-spot decision-making ability of college badminton players. At the theoretical level, based on situated learning and cognitive automation theories, the research clarifies the essence of simulated training and the cognitive composition of decision-making ability. Mechanistic analysis indicates that such training systematically improves the speed, accuracy, and stability of decision-making by optimizing information processing efficiency, solidifying cognitive templates, building pressure tolerance, and promoting rule abstraction. Furthermore, it proposes a systematic training framework featuring tiered design based on decision-making complexity, closed-loop feedback, and multi-dimensional evaluation. This study provides a theoretical basis and design rationale for the paradigm shift from "technical training" to "intelligent training."

Keywords: simulated competition scenario training; on-the-spot decision-making ability; cognitive processing; pressure adaptation; transfer pathway; training design

Introduction

The competitive performance of college badminton players depends not only on the automatization of technical movements and physical fitness, but more crucially on efficient decision-making ability in fast-changing match situations. However, conventional training often emphasizes technical repetition and fixed tactical drills. The simplified scenarios and low-pressure nature of such training result in limited transfer of training effects to real competitions, which are characterized by high stress and high uncertainty, leading to a "training-competition" performance gap. Therefore, exploring how to effectively enhance athletes' on-the-spot decision-making ability has become a significant topic in optimizing the scientific level of training. Simulated competition scenario training, by structurally reproducing key elements of competition, offers the possibility of developing decision-making ability in a controlled environment. The significance and necessity of this study lie in systematically examining the deep-level relationship between this training model and decision-making ability from three dimensions: theoretical construction, influence mechanisms, and design application. The study aims to move beyond descriptive, experience-based training accounts, establish a theoretical explanatory framework grounded in cognitive psychology and sports training science, and formulate a logically rigorous and progressively structured training design approach. This work seeks to address the methodological shortcomings in cultivating cognitive abilities within current college badminton training, thereby providing systematic theoretical support and practical guidance for enhancing athletes' competitive intelligence in high-pressure confrontations.

1. Theoretical Construction of Simulated Competition Scenario Training and On-the-Spot Decision-Making Ability

1.1 The Connotation and Structural Features of Simulated Competition Scenario Training

Simulated competition scenario training is a highly structured training method. Its core lies in the systematic replication and manipulation of key elements from real competitions within laboratory or

training environments. This method transcends general technical and tactical practice by precisely controlling situational variables present in matches, such as score pressure, time constraints, opponents' technical and tactical characteristics, and physical exertion states. It thereby constructs a training environment with high ecological validity. The goal is not merely to repeat technical movements, but to compel athletes to process information and make behavioral choices under psychological loads and cognitive demands that approximate those of actual competition. Consequently, it builds a bridge connecting daily training with real competitive events.

The structural features of this training model are primarily reflected in two aspects: the systematic nature of scenario design and the controllability of variables. The requirement for systematicity dictates that the simulation must cover the complete logical chain of match progression, including different phases such as the opening, rally, crucial points, and match points, while also incorporating unexpected situations like umpiring errors or unforeseen gains or losses of points. Controllability refers to the ability of the training designer to quantitatively adjust the difficulty, complexity, and pressure level of the simulated scenarios. Examples include modulating the tactical execution of opponent simulators, setting specific starting scores, or introducing disruptive factors. This enables the precise application and progressive increase of training load, thereby ensuring the effectiveness of the training stimulus^[1].

1.2 Definition and Component Elements of On-the-Spot Decision-Making Ability in Badminton

The on-the-spot decision-making ability in badminton can be defined as the psychological-cognitive skill that enables athletes, amidst the fast-paced, dynamic, and fiercely contested progression of a match, to perceive, assess, and predict their own and their opponent's status in real time based on limited time and incomplete information, and accordingly to select and execute the optimal or most adaptable technical-tactical action from multiple possible courses of action. This ability is the core manifestation of an athlete's competitive intelligence, directly determining the effectiveness and efficiency of technical-tactical execution. Its performance level is interactively influenced by multiple factors, including cognition, psychology, and skill repertoire.

The component elements of this ability encompass a closely interconnected chain of cognitive processes. The fundamental first step is situational perception and pattern recognition, whereby athletes quickly capture key on-court information such as the opponent's positioning, posture, stroke habits, and open spaces, and identify familiar tactical patterns. This is immediately followed by prediction and option generation, where athletes, based on the recognized patterns, anticipate the likely trajectory, placement, and speed of the opponent's return shot, while simultaneously activating their own skill repertoire to generate several feasible return options. The final stage is evaluation and selection, where, within an extremely short timeframe, a choice of action is made and motor execution is initiated based on an instantaneous assessment of success probability, risk cost, and physical exertion. This series of processes is typically completed in an automated or semi-automated manner within a sub-second timescale.

1.3 The Theoretical Basis for the Connection Between Simulated Training and Decision-Making Ability

The theoretical foundation for the influence of simulated competition scenario training on decision-making ability can be traced to situated learning theory and cognitive skill acquisition theory. Situated learning theory emphasizes that the learning and application of knowledge and skills are highly dependent on the context in which they occur. Decision-making in real matches relies on the interpretation of and response to specific situational cues, and these cue-response associations are difficult to establish in routine training divorced from concrete contexts. By providing structured scenarios rich in critical cues, simulated training promotes the development of situated knowledge in athletes-knowledge that corresponds closely to real competition. This knowledge, which essentially constitutes the core of decision-making ability, is characterized by "knowing what action to take in a given situation"^[2].

From the perspective of cognitive psychology, simulated training promotes the automation and optimization of cognitive processes related to decision-making. According to cognitive load theory, decision-making errors in competition often stem from the overload of working memory under pressure. High-fidelity simulated training, by repeatedly presenting typical decision-making scenarios under controlled pressure, leads to the automation of sub-processes such as the recognition of specific stimulus patterns, prediction, and response selection in athletes. This significantly reduces the

conscious cognitive load during decision-making. Consequently, in actual competition, limited cognitive resources can be more focused on processing novel and unconventional tactical situations, thereby enhancing the stability of decision-making and adaptability to unexpected circumstances. This transformation from controlled processing to automated processing is the key psychological mechanism through which decision-making ability is improved.

2. Analysis of the Mechanisms by Which Simulated Competition Scenario Training Influences On-the-Spot Decision-Making Ability

2.1 Optimization of Athletes' Cognitive Processing through Simulated Training

The optimization of athletes' cognitive processing by simulated competition scenario training is fundamentally centered on enhancing the speed and efficiency of information processing. In fast-paced net-separated confrontational sports like badminton, decision-making relies on the rapid capture and interpretation of dynamic visual cues. By systematically presenting situational stimuli highly consistent with real matches—such as specific opponent tactical combinations and typical offensive-defensive transition patterns—simulated training enables athletes to repeatedly encounter and process these critical pieces of information. This targeted, high-frequency exposure refines athletes' visual search strategies, prompting a more efficient allocation of attentional resources toward the most predictive cues, such as an opponent's racket face angle or body weight shift tendencies. Consequently, it reduces the time required for information identification and encoding. This process essentially reshapes athletes' pre-attentive stage information filtering capabilities, enabling them to prioritize features most relevant to decision-making amidst a flood of environmental information, thereby laying an efficient foundation for subsequent cognitive operations.

At a deeper level, this training method promotes the formation and retrieval of specialized cognitive templates within long-term working memory. A cognitive template is a highly organized structure of knowledge and experience that tightly couples specific situational patterns with corresponding optimal courses of action. By systematically drilling various typical and atypical match scenarios, simulated training accelerates the consolidation and structuring of these "situation-response" pairings within long-term memory. When athletes encounter similar situations in actual competition, the pre-stored cognitive templates can be rapidly activated and automatically provide decision-making options. This process significantly bypasses the slower, conscious logical reasoning process, realizing the transformation of decision-making from controlled processing to automated processing, thereby markedly enhancing the immediacy and accuracy of decisions.

2.2 The Relationship Between Pressure Adaptation and Decision-Making Stability in Scenario Simulation

The cognitive and emotional arousal induced by competitive pressure is a key variable that disrupts the stability of athletes' decision-making. Scenario simulation introduces stressors in a controlled manner, such as setting crucial scores, imposing time limits, or incorporating simulated umpires. This process essentially constructs a stress inoculation environment. Within this environment, athletes repeatedly experience the physiological arousal (e.g., increased heart rate) and psychological states (e.g., feelings of anxiety) triggered by pressure, and learn to maintain effective information processing and executive functions under such arousal. The essence of this process is to weaken the negative correlation between stress response and cognitive performance. It enables the athlete's decision-making system to adapt to pressure stimuli, thereby preserving the availability of cognitive resources and operational efficiency in genuinely high-pressure situations^[3].

The maintenance of decision-making stability under pressure relies on the synergistic development of emotion regulation and cognitive toughness. Simulated training not only provides opportunities to experience pressure but also embeds a closed loop of making decisions under pressure and receiving immediate feedback. Through multiple cycles, athletes gradually develop effective self-regulation strategies, such as managing arousal levels through breath control or specific preparatory routines, to prevent emotional fluctuations from excessively eroding cognitive resources. Concurrently, the experience of successfully handling pressure-laden situations within simulations can enhance athletes' self-efficacy in decision-making and their cognitive toughness. This toughness manifests as the ability to maintain goal-directed thinking in uncertain situations and a firm belief in one's own decision-making process. When adversity arises, athletes with cognitive toughness exhibit

decision-making tendencies that are less influenced by anxiety and are more grounded in objective analysis of the situation, thereby ensuring the consistency and reliability of the decision-making process. Simulated training thus fosters a form of "pressure tolerance," enabling the decision-making system to maintain robust output performance even amidst fluctuating external psychological conditions.

2.3 The Transfer Path of Decision-Making Models from Training to Competition Contexts

The transfer of decision-making ability is not an automatic generalization of training outcomes; rather, it depends on a high degree of similarity in key attributes between the training and competition contexts. The fundamental pathway through which simulated training facilitates transfer lies in its design based on ecological validity. This design ensures that the cognitive processes reinforced during training are isomorphic to those required in actual competition. This isomorphism is reflected in the similarity of situational cues (such as shuttlecock speed, spatial layout, and opponent behavior patterns), the matching of task demands (such as making choices under time pressure), and the consistency of response execution (technical actions must be feasible in real competition). When the training context aligns with competition at these deep structural levels, the cognitive neural pathways established during training are more likely to be successfully activated and applied in competition situations^[4].

The realization of transfer is concretely manifested as the adaptive adjustment and generalization of decision-making patterns. In the initial stage of simulated training, athletes may acquire specific decision-making solutions tailored to particular simulated scenarios. However, as the complexity and variability of the simulations increase, the focus of training shifts from memorizing specific solutions to extracting abstract decision-making rules. Examples include principles such as "when the opponent is in a passive position at the rear court, prioritize attacking the open space at the front court," or "during a rally phase, the primary objective is to increase shot depth and variation." These principle-based, more flexible decision-making rules form the internal foundation for transfer. When athletes enter actual competition, even when encountering situations not entirely identical to those practiced, they can apply these abstract rules, integrating them with the specific cues present in the immediate situation to generate appropriate decisions. This process enables the effective transfer of decision-making ability acquired in training to the broad and ever-changing domain of actual competition.

3. Design Principles for Simulation Training Aimed at Enhancing Decision-Making Ability

3.1 Stratified Construction of Simulation Scenarios Based on Decision-Making Complexity

Effective simulation training design should adhere to the principles of decision-making task complexity, adopting a layered and progressive structure. The foundational level focuses on decision-making within technical execution. This involves requiring athletes, within a relatively fixed tactical framework, to select and execute the most appropriate technical return based on the basic attributes of the incoming shot, such as speed, placement, and height. The core objective of this level is to establish stable connections between fundamental technical movements and simple situational cues, thereby reducing technical uncertainty in decision-making and providing a reliable foundation of motor execution for more complex decisions. The simulation design at this stage typically controls the range of variables in the opponent's returns, emphasizing decision-making accuracy and the quality of technical execution.

The construction of the advanced level introduces dynamic tactics and uncertainty. At this level, simulation scenarios must incorporate changes in the opponent's tactical intent, the effects of score pressure, and pattern accumulation during multi-shot rallies. For example, specific "opponent tactical combination packages" can be designed, requiring athletes to recognize the opponent's tactical patterns over several consecutive shots and dynamically adjust their own counter-strategies. Simulations at an even higher level involve solving open-ended problems, such as setting a specific match segment where athletes must autonomously design and execute an overall tactical plan to reverse the situation. This stratified construction, progressing from "reactive selection" to "anticipatory design" and further to "strategic planning," systematically increases the cognitive load and adaptive scope involved in decision-making. It ensures that the training stimulus aligns with the actual developmental trajectory of the athletes' decision-making ability.

3.2 Integration of a Decision Feedback and Correction System within the Training Process

The value of simulated training lies not only in providing situational experience but also in establishing a closed-loop decision feedback and correction system. This system aims to make the athlete's decision-making process and its consequences explicit, thereby providing an objective basis for correction. Immediate feedback is conducted during the training session itself. Utilizing tools such as video replays and technical statistical data, coaches and athletes jointly review key decision points. They analyze whether the cues upon which the decision was based were accurate, whether the range of generated options was comprehensive, and the gains and losses of the final choice. This feedback goes beyond the assessment of movement quality in traditional technical-tactical analysis, directly focusing on the cognitive logic behind decisions, thereby promoting the development of metacognitive ability^[5].

Retrospective analysis and pattern extraction constitute the in-depth component of the feedback system. Following a phase of training, the accumulated simulated training data is integrated and analyzed to identify whether an athlete exhibits decisional tendency biases or cognitive blind spots in specific types of situations, such as responding to an opponent's push or smash after playing a net shot. By quantitatively analyzing the distribution of decision options, reaction times, and success rates, individualized characteristics of decision-making patterns can be abstracted. These characteristics may include being overly conservative, having a preference for specific shot lines, or experiencing a reduction in options under pressure. Based on the patterns extracted in this manner, subsequent simulated training can be more targeted in designing scenarios. This approach challenges and corrects these ingrained biases, guiding athletes to build a more comprehensive and balanced decision-making structure, thereby achieving a leap from mere experience accumulation to the optimization of cognitive architecture.

3.3 Evaluation Dimensions and Long-Term Tracking of Simulation Training Effectiveness

Evaluating the effectiveness of simulation training must go beyond traditional metrics like win-loss records or technical statistics to establish a multi-dimensional assessment system for decision-making ability. The process-oriented dimension focuses on the quality of the decision itself, encompassing decision speed (the time from information appearance to action initiation), decision accuracy (the degree to which the chosen action aligns with the theoretically optimal solution for the situation), and decision adaptability (the ability to adjust plans in response to sudden interference or situational changes). The result-oriented dimension evaluates the effectiveness of decision execution, typically measured by the tactical outcome directly resulting from that decision—for instance, whether it created an offensive opportunity or neutralized the opponent's threat. The psychophysiological dimension indirectly reflects the psychological efficiency and stability of the decision-making process by monitoring subjective perceptions of cognitive load during training, stress-related physiological indicators (such as heart rate variability), and levels of attentional focus before and after decisions are made.

Long-term tracking of simulation training effectiveness requires the establishment of individualized decision-making ability development profiles. These profiles should not only record performance data from simulation scenarios at various complexity levels but also track the transfer of these abilities to subsequent real competitions^[6]. By periodically implementing standardized simulation scenario assessments (e.g., per training cycle or season), development curves for the athlete's various sub-dimensions of decision-making ability can be charted, allowing observation of their progress trajectories and bottlenecks under different pressure situations. This long-term dynamic tracking transforms training design from a static plan into one capable of dynamic adjustment based on feedback from ability development, forming an adaptive cycle of "assessment-training-reassessment." This ensures that sustained training investment can precisely target the long-term shaping and consolidation of decision-making ability as a core competitive element.

Conclusion

Based on a comprehensive discussion encompassing theoretical construction, mechanistic analysis, and design principles, this study confirms that simulated competition scenario training is an effective method for systematically enhancing the on-the-spot decision-making ability of college badminton players. Its impact is not merely a one-dimensional improvement; rather, it achieves a multi-layered and holistic optimization of the decision-making ability structure by reshaping athletes' cognitive

processing patterns, strengthening their psychological resilience under pressure, and facilitating the formation and transfer of abstract decision-making rules. The stratified design based on decision-making complexity ensures the progressive and adaptive nature of the training. Meanwhile, the closed-loop feedback system and the multi-dimensional evaluation framework guarantee precise control over the training process and enable the visual tracking of its effects. Future research and practical directions may focus on: integrating emerging technologies (such as virtual reality and biofeedback) to enhance the immersion of simulated scenarios and the real-time collection of psychophysiological data; deepening the study of personalized decision-making patterns among athletes of different skill levels and styles to enable more refined individual training prescriptions; and exploring the transferability and applicability of this training model to other skill-dominant net-separated antagonistic sports, thereby validating and extending its theoretical implications. Ultimately, the goal is to promote a profound shift in the training paradigm-from one centered on "motor performance" to one centered on the integrated performance of "cognition and action."

References

- [1] Zhang Lei, Sun Xuntao, and Yu Yang. "A Study on the Implementation Effect of Interest-Based Grouping in College Badminton Public Physical Education Courses." *Ice and Snow Sports Innovation Research* 6.21 (2025): 161-163.
- [2] Zhao Ruixue. "Research on Strategies for Constructing the University Badminton Competition Organization System." *Sporting Goods and Technology* .20 (2025): 25-27.
- [3] Xie Hongbing and Hao Siyuan. "Research on the Application of Blended Teaching Mode in College Badminton Instruction." *Ice and Snow Sports Innovation Research* 6.18 (2025): 125-127.
- [4] Pan Yang. "Cultivation Methods and Measures for Badminton Tactical Awareness." *Ice and Snow Sports Innovation Research* 6.13 (2025): 158-160.
- [5] Wang Qian and Mu Cui. "Basic Technical Training Methods for Youth Badminton." *New Sports* 12 (2024): 40-42.
- [6] Huang Chong. *Research on the Influencing Factors and Mechanism of Badminton Technique and Tactics Evolution.* 2024. Chengdu Sport University, MA thesis.