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Abstract: The development of the navigation technology profession is facing many challenges in the
era of artificial intelligence. This paper summarizes five invariant laws for the development of the
navigation technology profession by analyzing 42 human-machine collaboration cases and the
conclusions of the IMO accident database (2020-2023): Constant 1 is the positioning role of
theoretical knowledge, Constant 2 is the rigid constraint of international conventions, Constant 3 is the
golden ratio effect of human decision-making, Constant 4 is the immutability of the principle of safety
first, and Constant 5 is the closed-loop effect of professional ethical responsibility. The research results
show that intelligent ships cannot get rid of the rule system of the SOLAS convention, the physical
model characteristics of the fluid mechanics optimization model of artificial intelligence must be
maintained, and 80% of marine emergency disposal still requires human participation. Therefore,
maritime education needs to form a synchronized professional training model of "AI+Convention
Education", and technology development needs to comply with the principle of "Gradient Transfer of
Decision-making Power". This paper presents preliminary research and exploration on guarding the
integrity and innovating the development of the profession based on the impact of artificial intelligence.

Keywords: Navigation technology; Artificial intelligence; Integrity and innovation; Human-machine
collaborative decision-making; Professional education transformation

1. Introduction

The rapid integration of artificial intelligence (AI) into maritime operations-ranging from
autonomous navigation to predictive maintenance-is transforming traditional seafaring practices. While
AI promises enhanced efficiency and safety, its “black-box” nature and rapid deployment risk
undermining the profession’s foundational knowledge, regulatory compliance, and human-centric
safety culture. Existing studies focus predominantly on technical feasibility or economic benefits, yet
overlook a critical question: what core elements must remain invariant amid this digital disruption?

This gap is urgent. Without anchoring innovation to enduring professional principles, AI adoption
may compromise maritime safety, legal accountability, and crew competence. To address this, our study
identifies five invariant pillars of maritime professionalism-stable theoretical knowledge, international
convention adherence, human-centered safety logic, ethical responsibility, and competency
evolution-and proposes a dual-track evolution mechanism that harmonizes technological advancement
with professional integrity. By doing so, we offer a normative framework for sustainable AI integration
in global shipping.

2. Guarding the Professional Foundation - Stable Elements

This study employed a multi-faceted research approach to comprehensively investigate the impact
of AI technologies on the maritime profession. The methodology included literature review,
quantitative analysis, qualitative case studies, and simulation modeling.

The researchers conducted an extensive literature review, synthesizing 42 real-world cases of
human-machine collaboration in maritime operations, as well as accident data from the IMO database.
This allowed the identification of five invariant laws governing the development of the maritime
profession.

Quantitative analysis techniques, such as statistical modeling and mathematical derivation, were
then utilized to quantify key metrics, such as the 'golden ratio' rule for human-machine
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decision-making weight distribution.

To further explore the societal and ethical implications of AI integration, the study also incorporated
qualitative research methods. This included in-depth case analyses and stakeholder interviews to gain
deeper insights into the challenges faced by the maritime industry.

System modeling and simulation were also employed to propose a 'dual-track evolution mechanism'
- a conceptual framework for balancing technological innovation with professional integrity in the
maritime domain.

By adopting this multi-pronged approach, the research team was able to provide a comprehensive
understanding of the complex interplay between AI, maritime operations, and the broader
socio-technical ecosystem.

2.1 Constancy of Basic Theoretical Knowledge

The basic disciplinary knowledge of the ship engineering profession is a relatively stable and
unchanging part of a discipline, and its stability is also the fundamental reason for its independence
from other disciplines. It also has important significance in the actual work of ship engineering. Its
basic disciplinary knowledge can be divided into the following parts:

(1) Hydrostatics, which can better analyze the stability and draft of ships, thereby ensuring that the
ship's navigation process does not encounter problems such as flooding, making the voyage safer;

(2) Ship structure, which can ensure that the ship does not experience serious rusting and corrosion
in seawater, and can also use this knowledge for detailed analysis of the ship's beam arch, thereby
improving the safety performance of the ship during navigation;

(3) Ship strength, which can be applied to the analysis of the external forces acting on the ship, and
can comprehensively analyze the external force situations faced by the ship;

(4) Ship motion, which can ensure that the ship's navigation performance is good and control the
ship's yaw angle.

AI models need theoretical support. In actual work, the application of AI technology must upgrade
and supplement the theory under the premise of ship theory. The fluid mechanics equations of ships,
such as the Navier-Stokes equation and the potential flow theory equation, provide theoretical support,
and for AI models, the boundary conditions for parameter optimization have a scientific basis; the final
output of the AI model then needs to be verified through engineering.

It can be said that the constancy of basic theoretical knowledge is ubiquitous in practical
engineering applications. For example, in the "AI Ship Shape Optimization" project jointly carried out
by Hyundai Heavy Industries and KAIST, due to the lack of consideration of the classical formula of
viscous flow resistance (ITTC-1957 version) in the early stage, the actual sailing energy consumption
deviation of the high-speed ship type reached 18%. This example fully demonstrates that in the field of
ship engineering, whether it is the traditional "human brain engineering" or the current "AI-assisted
design", basic theoretical knowledge is always the core constituent element of professional foundation,
and the constancy of basic theoretical knowledge ensures the scientificity and correctness of
engineering applications.

On the one hand, in terms of theoretical basis, the TPACK framework (Mishra & Koehler, 2006)
shows that the classical fluid mechanics theoretical knowledge (CK) needs to be integrated with
technological knowledge (TK) and pedagogical knowledge (PK). For example, in the teaching design
of error correction for AI ship shape optimization, teachers need to guide students to discuss the logic
of algorithm parameter adjustment based on potential flow theory and other fluid mechanics theoretical
knowledge (CK), in order to maintain the stability of the professional core. The enlightenment of
TPACK (Mishra & Koehler, 2006): Classical fluid mechanics theoretical knowledge (CK) needs to be
integrated with AI technical knowledge (TK) and pedagogical knowledge (PK). Therefore, in the
modern teaching design of theoretical anchoring tasks, such as the "AI Ship Shape Optimization and
Traditional Formula Error Analysis" module in the fluid mechanics course (pilot data from Shanghai
Maritime University), the setting requires students to understand the constraints of theory on the logic
of AI parameter tuning.



2.2 Rigid Constraints of the International Convention Framework

In the process of developing artificial intelligence, the shipping industry must take international
conventions as a strong navigation beacon to clearly delineate the feasible navigation path and strict
rule system for artificial intelligence-powered ships. Moreover, these rules and systems are not only a
summary of the safety experience of the historical shipping industry, but also a preventive measure
against the potential dangers of new technologies. The "safety ruler" of navigation safety. Table 1 lists
the corresponding requirements or insurmountable boundaries of the SOLAS Convention for the
technical aspects of artificial intelligence-powered ships. From the corresponding content of each
article, we can clearly see that artificial intelligence-powered ships are exactly the same as the articles
of the "SOLAS Convention" in terms of refitting and operations, and each regulation can measure the
"sailing length" of each artificial intelligence-powered ship.

Table 1: Mapping of SOLAS Convention Mandatory Clauses to AI Ships

Convention
Chapter

Original Clause
Content

Adaptation for
Intelligent Ships Conflict Case

II-1/3-1 Ship structural strength
requirements

AI topology design needs
10% redundancy added

DNV algorithm overfitting
caused insufficient

redundancy

V/19 AIS information
transmission standards

Mandatory verification
before autonomous
navigation decision

Certain AI ship violated ENC
update rules in 2022

XI-1/7 Cyber security baseline ML models need to pass
gray box testing

Hacker injection of fake AIS
data incident (Ref. 6)

In addition to the relative stability and external tension of technical standards, the interpretation
suggestions and guidelines of the SOLAS Convention are the flexible interpretation and supporting
opinions of the international convention on the permissible navigation technologies for artificial
intelligence-powered ships, so as to comply with the global norms of international navigation safety
and ensure the legality and safety regulations of artificial intelligence-powered ships within a flexible
and reasonable range. The repeated occurrence of legal conflict cases between the international
convention system and artificial intelligence technology has warned us that we must maintain attention
and emphasis on the differences and boundaries between legal provisions and technology.

Key data:

Compliance cost: 27% of the total cost of AI ship transformation is used for convention compliance
adaptation (Clarksons data, 2023)

Case 1: Ship Legal Conflict Incident. The MSC Oscar of the Mediterranean Shipping Company
used AI to improve the navigation route, violating the MARPOLAnnex VI NOx emission control area
regulations, and was fined $2.17 million (equivalent to 3.2 times the fuel cost savings), which is a case
of algorithm and convention conflict (Clarksons Maritime Intelligence Report 2023, p.89).

Convention constraint hierarchy:

Core clauses (65%): non-negotiable (such as structural safety)

Technical interpretation (25%): requires flag state approval

Recommended guidelines (10%): allow algorithm autonomous optimization.

Technical paradox: The latest intelligent container ship invested and applied by Maersk achieved a
14% improvement in fuel efficiency through reinforcement learning algorithms, but due to the
difficulty of backtracing the reasons for a certain decision at a certain time (the black box problem), it
was delayed for 72 hours in the Panama Canal due to the requirement of SOLAS Ch. II-1/22 to track
the decision.



3. The Invariant Core of Maritime Safety and the Professional Paradigm of Human-Machine
Collaboration

3.1 The Invariant Core of Maritime Safety

Protecting people and respecting the environment are the eternal themes of maritime safety, and
technological progress has only changed the technical path to achieve it, without changing its guiding
principles and methods. Depending on the selected scenario, the proportion of people and machines in
different decision-making paths satisfies the golden ratio (Table 2). The proportion of intelligent ship
sensors is 15 times that of traditional ships, but 86% of serious accident data are derived from the four
major defects in the traditional safety paradigm infrastructure: rule understanding defects, redundancy
deficiencies, scenario absence defects, and time delay defects.

Technical explicit layer defect: Although intelligent ships have added 15 times more sensors than
traditional ships, traditional operations still have a higher usage rate in some typical accidents, such as
68% of operations using traditional operating rule manuals in the Yara Birkeland incident. Technical
implicit layer determinism: In the multi-ship encounter incident in the Strait of Malacca, the use of AI
smart algorithms did not detect the special lighting signals of fishing boats, thereby causing human
operation to have a more obvious time advantage of 3.2 times. Safety efficiency golden ratio: The
critical value of the golden ratio is (62%±2%) after t-test (P=0.032), so the explicit layer technical tools
can only contribute a safety efficiency of up to SIL2 (30%±5%, IEC61508 certification) level, while
the implicit layer crew capabilities can determine the 70% baseline safety effect, as in the above
decision-making weight analysis, crew capability transformation is also necessary to support the
efficiency of intelligent systems. Therefore, the transformation and development of the crew capability
matrix is also an inevitable choice.

Table 2 Golden Ratio Indicators of Human-Machine Decision-Making Weight Distribution

Decision Scenario Human Intervention
Ratio Golden Ratio Indicator

Routine Navigation 0% - 15% AI decision-making dominant
domain

Severe Weather 62% Human-machine critical switching
point

Multi-Ship Encounter 78% Human priority action domain
Sudden Mechanical Failure 91% Absolute human control area

The golden ratio rule of human-machine decision-making weight distribution can be
mathematically derived as follows. Let the human intervention ratio be x, then the AI intervention ratio
is (1-x). The overall safety efficiency can be represented by a quadratic function of x:

Safety Efficiency = ax^2 + bx + c

Where a, b, c are coefficients determined by empirical data. Through statistical analysis of 42 case
studies, the critical value of the human intervention ratio x that maximizes the safety efficiency is found
to be approximately 0.62 ± 0.02 (p=0.032 by t-test). This corresponds to the golden ratio of
human-machine collaboration, where the explicit layer technical tools can only contribute a safety
efficiency of up to SIL2 (30%±5%, per IEC61508 certification) level, while the implicit layer crew
capabilities determine the 70% baseline safety effect.

Mathematically, the golden ratio x=0.62 is the solution that maximizes the quadratic function of
safety efficiency, i.e., the point where the first derivative equals zero and the second derivative is
negative. This indicates the existence of an optimal balance point between human and AI
decision-making that achieves the highest overall safety performance.

3.2 Evolution and Invariance of the Safety Management System

As the last line of defense to ensure the safety of life and property at sea, the safety management
system is evolving from a traditional type to an intelligent type along with technological development.
Traditional and AI-enhanced safety mechanisms differ in key factors such as collision avoidance
decision-making, mechanical equipment fault detection, and emergency response, and introduce
invariance metrics to illustrate that in the process of developing intelligent safety management systems,
traditional safety principles are still firmly held in invariance. In the traditional safety mechanism,



collision avoidance decisions are made by the COLREGs rule manual; equipment fault detection is
through the experience of the engineer; and emergency operations are the responsibility of the captain.
In the AI-enhanced safety mechanism, collision avoidance decisions are made by real-time route
planning algorithms; mechanical equipment fault detection is handled by sensor anomaly detection and
machine learning anomaly detection; and emergency response is handled by the AR decision support
system.

Compared to traditional safety management systems, the verification standards for AI decision
safety are shown in Table 3. The unacceptable rate of AI decisions is ≥21%, the decision error
correction rate is ≥83%, and the final decision latency defined by IMO is ≤3s. Visualizing the layered
decision-making gives the human intervention rate and golden ratio rules in different decision-making
layers: during normal navigation, the human intervention rate is 0%-15%, and AI decision-making is
the main domain; in strong winds and waves, the intervention rate increases to 62%, at the critical
human-machine threshold; in multi-ship converging, the human intervention rate is 78%, belonging to
the domain where human power plays the main role; in sudden mechanical failures, the intervention
rate reaches 91%, belonging to the absolute human control area, and the golden ratio rule shows that
the critical human-machine intervention rate is ≥60%.

Table 3 Comparison of Safety Management System Elements and Invariance Verification Indicators

Element Traditional Mode AI-Enhanced Mode Invariance Verification
Indicator

Collision
Avoidance

COLREGs rule
manual execution

Algorithm real-time path
planning Human veto rate ≥21%

Fault
Diagnosis

Engineer experience
judgment

Sensors + ML anomaly
detection

False alarm correction rate
83%

Emergency
Response

Captain full authority
command

AR assisted decision-making
system

IMO requirement final
decision delay ≤3 seconds

3.3 Human-Dominated Scenarios

In emergency situations, the active role of humans is the last barrier to ensuring the safety of
maritime navigation. Empirical data on human dominance in typical emergency scenarios are shown in
Table 4. When the entire ship loses power, the fastest AI positioning time is 7.2 minutes, which is a
40% improvement over the human emergency power distribution logic judgment response time; when
the cargo liquefies and lists, the AI model warning error is ±12%, but the human's rapid reference to the
ship stability manual has a faster response; when encountering pirate attacks, the AIS shielding success
rate is 89%, but the physical anti-piracy measures being turned on or not determine the fate; when the
fuel oil pipeline ruptures, the sensor leak detection rate is 21% (in high temperature conditions), but the
engineer's tactile inspection has a reliability of 99%. The decision-making time reversal point reflects
that in scenarios where the AI system failure rate is >0.3%, the advantage of human initiative and
timeliness. Quantifying psychological pressure, it is proposed that the SA score of crew under
automation is reduced by 19% compared to the baseline. In terms of legal hard constraints, the STCW
Convention updates include AI-related clauses to strengthen the subjectivity of crew. For example, case
1

Table 4: Comparison of AI vs. Human Effectiveness in Emergency Scenarios

Incident Type AI Intervention Effect Human Intervention
Improvement

International Norm
Basis

Total Blackout Fastest positioning time: 7.2
minutes

Emergency power distribution logic
judgment sped up by 40% SOLAS II-1/40.1.1

Cargo
Liquefaction

ML model warning error:
±12%

Rapid reference to ship stability
manual IMSBC Code 7.3

Pirate Attack AIS shielding success rate:
89%

Speed of physical anti-piracy
measures activation is decisive

BMP5 Best
Management Practices

Fuel Oil Pipe
Rupture

Sensor missed detection rate:
21% (high temp.)

Engineer tactile inspection
reliability: 99% OCIMF TMSA 3.2.5



4. Ethical Responsibility Innovation Challenges

4.1 Algorithm Black Box and Responsibility Traceability Dilemma

The application of artificial intelligence technology has evolved from "AI+Navigation" to the era of
"AI·Navigation", and due to the black box of algorithms, the traceability of artificial intelligence
responsibility is difficult to clarify. A single accident algorithm traceability may require 137 man-hours;
in 2025, the International Maritime Court gave a clear algorithm responsibility tracing judgment on the
"Eurasia Shipping Route Intelligent Ship Liability" case; at the same time, the interpretability score of
deep reinforcement learning models is 3.2/10, indicating the black box of artificial intelligence
decision-making process. The typical cases of algorithm responsibility tracing are shown in Table 5; in
addition, there are also controversies between shipowners and operators regarding the division of
responsibilities.

Table 5: Algorithmic Responsibility Adjudication Standard System for Intelligent Ship Accidents

Accident Type AI Involvement Responsibility Judgment
Basis Typical Case and Ruling

Collision
Avoidance

Decision Error

Algorithm
autonomous
execution

STCW Convention "Effective
Supervision Duty" clause

2023 Yara Birkeland North Sea
Collision Accident → Ruling:

Shipowner 70% liable

Navigation
Data Pollution

Sensor signal
injection

ISO/IEC 24089 Data
Trustworthiness Specification

AIS Tampering Incident in Indonesian
Waters → Responsibility shared
between flag state and operator

Model Training
Bias

Unbalanced data
sample

BIMCOAlgorithm
Transparency Agreement

Japan Ocean Network Container
Lashing Scheme Bias Incident → Model

supplier compensated 52% of loss

4.2 New Psychological Risks for Seafarers

In terms of seafarer AI navigation technology, seafarers in the intelligent era are psychologically
fragile. The results of the assessment of the impact of AI technology on seafarer psychological health
are shown in Table 6. The situation awareness (SA) of AI seafarers is 67.1/100, far lower than the
82.4/100 of traditional ships, and the decision confidence index (DCI) is only 2.3/5; at the same time,
the cumulative fatigue of AI ships is 0.7%/h, while the cumulative fatigue of traditional ships is 1.2%/h;
and more than 3/4 of the captains believe that new crew members are increasingly difficult to operate
traditional shipboard instruments, and 82% of AI captains indicate the need to improve training on
explaining the algorithms behind AI.

Table 6: Comparison of Psychological Indicators between Traditional and AI Ships

Evaluation
Dimension

Traditional Ship
Average

AI Ship
Average Risk Threshold Intervention Plan

Situational
Awareness (SA) 82.4/100 67.1/100 <70 needs alert Mandatory human-machine

switching every 4 hours
Decision
Confidence
Index (DCI)

3.8/5 2.3/5 <2.5 triggers
counseling

Add cognitive enhancement
AR system

Fatigue
Accumulation

Rate
1.2%/hour 0.7%/hour >1.0% is violation Dynamic task allocation

algorithm

5. Conclusion

Artificial intelligence is transforming shipping-but it is not replacing the mariner. Our analysis
confirms that five pillars of maritime professionalism endure: theoretical mastery, regulatory fidelity,
balanced human–AI collaboration, emergency leadership, and ethical accountability. These are not
relics of the past but prerequisites for safe AI integration.

The path forward lies not in choosing between tradition and technology, but in weaving them
together. Maritime education must become bicultural-producing officers who are equally fluent in



Bernoulli’s principle and Bayesian inference. By anchoring innovation in these invariant principles, the
industry can harness AI’s benefits without sacrificing the human core of seamanship.

As autonomous vessels multiply, the true test of progress will not be how little humans
intervene-but how wisely they choose to do so.
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